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NUMERICAL SOLUTION OF A TWO-DIMENSIONAL
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SUMMARY

The numerical solution of a model describing a two-dimensional fluidized bed is considered. The model
takes the form of a hyperbolic system of conservation laws with source term, coupled with an elliptic
equation for determining a streamfunction. Operator splitting is used to produce homogeneous one-di-
mensional hyperbolic systems and ordinary differential equations involving the source term. The
one-dimensional hyperbolic problems are solved using Roe’s method with the addition of an entropy fix.
The numerical procedure is second-order in time and first-order in space. Second-order-accuracy in space
is obtained using flux limiting techniques. Numerical experiments which show the development of
bubbles in the bed are presented. The familiar kidney-shaped bubble, observed experimentally, is found
when using the method which is second-order in space. On the same mesh, the first-order method
produces bubbles which are no longer kidney-shaped. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a fluidized bed, particles confined to a vertical column are suspended by a sufficiently strong
upward volumetric flux of fluid. In some circumstances the fluid flows uniformly through a
bed of particles of constant concentration. A more interesting and difficult situation, however,
is when the fluidized bed exhibits a phenomenon known as slugging or bubbling, where regions
of low particle concentrations propagate up the bed.

In this paper, a fluidized bed model is solved numerically in two space dimensions. The
model, which does not contain particle viscosity, consists of a hyperbolic system of conserva-
tion laws with a source term and a coupled elliptic equation for determining a streamfunction.
The origins of the model can be found in the review article by Drew [1], where a general set
of equations modelling dispersed two-phase flow is derived by averaging the microscopic
equations of motion, leading to a continuum model for both phases. In the present study,
heavy particles are dispersed in a gas and gas inertia is neglected, thereby reducing the
conservation of momentum equation for the gas phase to Darcy’s law. Many papers on this
subject have used this type of model, where the particle phase is modelled as a Newtonian fluid
with a particle phase viscosity (which is much larger in magnitude than the fluid viscosity).
However, as in single phase flow, the question arises as to the possibility of ignoring particle
phase viscosity in certain circumstances and studying the inviscid equations. In the current
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model, this results in a problem with real characteristics, as opposed to the more difficult case
of complex characteristics, in more general two-phase flows [2].

By studying one-dimensional travelling wave solutions with variations in only the vertical
direction, some authors [3,4] have concluded that particle viscosity, no matter how small, is
responsible for the oscillations or slug-like structure of these solutions. However, Ganser and
Lightbourne [5] have shown mathematically for a model without particle viscosity, that there
exist one-dimensional solutions which possess the oscillatory and slug-like behaviour. One-di-
mensional numerical simulations by Christie et al. [6] also indicate that the model without
particle viscosity exhibits slugging.

Although experimental work has demonstrated that one-dimensional slugging does occur,
solutions with variations in the horizontal direction as well as the vertical direction are much
more typical. The focus of this paper is to numerically determine solutions with variations in
the vertical and horizontal directions. In particular, the response of an already fluidized bed to
additional gas blown through a centrally located orifice at the bottom of the bed is studied.

The numerical scheme is an extension of that developed by Christie et al. [6], for the
one-dimensional case. The well-known splitting technique of Strang [7] is used to reduce the
two-dimensional model equations to a sequence of problems involving ordinary differential
equations, hyperbolic systems in one space dimension, and an elliptic equation for the
streamfunction. Roe’s method [8] with a superbee flux limiter, and the entropy fix of Harten
and Hyman [9] are applied to the split hyperbolic system. A second-order finite difference
method is used to solve the elliptic equation and the ordinary differential equations produced
by the splitting are solved in closed form. The resulting method has second-order accuracy in
space and time and is explicit in time.

Roe’s method uses an approximate Riemann solver on the hyperbolic systems. Exact
Riemann solvers are also available and were applied to a one-dimensional hyperbolic fluidized
bed model by Christie and Palencia [10]. Both papers [6,10] contain results which demonstrate
one-dimensional slugging.

Other work on numerical solutions of two-dimensional fluidized bed models includes the
paper by Pritchett et al. [11], where the model includes a particle viscosity term in the
momentum equations and is solved by an implicit finite difference scheme. Syamlal [12] and
Syamlal and O’Brien [13] solve a hyperbolic system using an implicit, first-order in space,
donor-cell approach and report a smoothing of discontinuities. In some papers, a line of
symmetry is used in the calculations so that the numerical results display perfect symmetry. In
this paper a forced symmetric solution has been avoided.

In the next section, a two-dimensional mathematical model of a fluidized bed is described.
Later, Roe’s method for the operator split system is presented. A first-order scheme in space
is derived and, using flux limiters, a second-order scheme in space is obtained. Numerical
results show the evolution of bubbles. The familiar kidney-shaped bubble is found with the
second-order method but is not present in the results obtained when using the first-order
method on the same mesh.

2. MATHEMATICAL MODEL

A continuum approach is used for both the particle phase and the gas phase. The equations
are given by

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 381–394 (1998)



TWO-DIMENSIONAL FLUIDIZED BED MODEL 383

(a

(t
+9 · (a6p)=0, (1)

((1−a)
(t

+9 · (1−a)6g=0, (2)

((rpa6p)
(t

+9 · (arp6p6p)= −a9pg−9a(pp−pg)−rpagẑ+B(a)(6g−6p), (3)

0= − (1−a)9pg−B(6g−6p). (4)

Equations (1) and (2) are the continuity equations for each phase and (3) and (4) are the
momentum balances. The particle volume concentration is denoted by a, 6p, 6g are the velocity
vectors of the particle and gas phases, rp, rg are the actual densities of the particles and gas,
pp, pg are the pressures, g is the acceleration due to gravity, ẑ is a unit vector in the z-direction,
and B(a) is the drag coefficient. Since rp�rg, the inertia of the gas has been neglected in
Equation (4), leaving Darcy’s law.

As in Needham and Merkin [4], Fanucci et al. [3,14], and Liu [15,16], a linear drag law is
used here, primarily because of its simplicity. The difference between the pressures in the two
phases is modelled as

a(pp−pg)=rp6 t
2F(a), (5)

where 6t is the terminal velocity of an isolated particle. It is usually assumed that F %(a)\0. For
example, in Needham and Merkin [4], Liu [15,16], and Homsy et al. [17], F % is assumed to be
a positive constant, and in Fanucci et al. [3,14], F % exhibits rapid growth for larger particle
concentrations. In this last choice for F %, the physically motivated properties are that F % is
small for small a and becomes infinite as a approaches a packing concentration apB1. These
are essentially the properties of an incompressible model. A form for F %(a) that captures these
more realistic features is

6 t
2F %(a)=

s2a2

(ap−a)2. (6)

The constant s can be related to the linear stability of the equilibrium solutions that
correspond to the states of uniform fluidization. For a constant particle concentration of
a=a0 (05a05ap), there is a solution of the system of Equations (1)–(4) with 6p=0 when the
flux of vertical gas, j, entering the bed satisfies

j=
a0rpg(1−a0)2

B(a0)
. (7)

The kinematic wave speed associated with this equilibrium solution is

ck(a0)=
d

da

�
aj−

a2rg(1−a)2

B(a)
�)

a=a 0

. (8)

When the higher order speed 6t
F %(a0) satisfies

6t
F %(a0)\ck(a0), (9)

the bed is linearly stable to perturbations in the vertical direction. The state a=a0u is the
critical state that divides linearly stable and unstable solutions and is defined by

6t
F %(a0u)=ck(a0u). (10)
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Once a0u is chosen, this equation determines s. As a0u�ap, s�0 and Equation (6) approaches
the incompressible model.

The continuity equations are manipulated in the following manner. Adding Equations (1)
and (2) implies that the vector field a6p+ (1−a)6g is divergence-free. At most, problems with
spatial variations in the vertical direction (z-axis) and the horizontal direction (x-axis) will be
studied, therefore, this constraint on a6p+ (1−a)6g can be satisfied by the introduction of a
streamfunction c(x, z, t) with the properties

a6px+ (1−a)6gx=
(c

(z
, (11)

a6pz+ (1−a)6gz= −
(c

(x
. (12)

The subscripts x and z denote the first and second components of the velocity vectors,
respectively. Equations (11) and (12) can then be used to eliminate 6gx and 6gz from the
problem.

The normalized equations used in the numerical analysis have 6t as the velocity scale, 6 t
2/g

and 6t/g as the length and time scales, respectively. As can be seen from Equations (11) and
(12), the scale for the streamfunction is 6 t

3/g. For simplicity, the notation for the scaled
streamfunction will remain as c. The drag coefficient as it appears in Equation (4) is given by

B(a)=
arpg(1−a)2−N

6t
. (13)

Typically, the real number N is chosen according to 25N54 [4,17] and in this numerical
calculation, N=3.5 is selected. After normalization, the drag coefficient becomes simply
a(1−a)2−N and will continue to be denoted by B(a) for simplicity.

The normalized two-dimensional equations consist of a hyperbolic system

(a

(t
+
(m
(x

+
(n
(z

=0, (14)

(m
(t

+
((mu+F(a))

(x
+
((nu)
(z

=
B(a)

(1−a)2

�(c
(z

−u
�

, (15)

(n
(t

+
((m6)
(x

+
((n6+F(a))

(z
=

B(a)
(1−a)2

�
−
(c

(x
−6

�
−a, (16)

with m(x, z, t) denoting the horizontal momentum, and n(x, z, t) the vertical momentum. The
horizontal velocity u(x, z, t) and the vertical velocity 6(x, z, t) are defined by m=au and
n=a6. The streamfunction c(x, z, t), which corresponds to the total volumetric flux [18], is
obtained by solving the elliptic equation

(

(x
��

a
(c

(x
+n

�
(1−a)−N�+

(

(z
��

a
(c

(z
−m

�
(1−a)−N�=0. (17)

The spatial domain of the system (14)–(17) is a rectangle with −xR5x5xR and −zR5
z5zR. In the numerical calculations, initial conditions will be specified for a, m, n, and then
Equation (17) will be solved for c. The boundary conditions are given by

u=0 at x= −xR, xR, and zR, (18)

6=0 at z= −zR. (19)
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The case of a centrally located (x=0, z= −zR) jet of gas of width 2xb (−xbBxBxb inside
the jet) is considered. The background fluidizing gas entering at the bottom of the bed is
jM= (1−aM)N where aM is chosen between ap and a0u. Initially, the flux of gas entering at the
bottom of the bed inside the jet is increased to j\ jM. At the top of the bed the total volumetric
flux that entered at z= −zR, given by xb( j− jM)/xR+ jM, is assumed to be evenly dispersed.
The boundary conditions for c are

c(−xR, z, t)=0, (20)

c(xR, z, t)= −2xR jM+2xb( jM− j ), (21)

c(x, −zR, t)=Í
Á

Ä

− jM(x+xR)
− j(x+xb)− jM(xR−xb)
− jM(x+xR)+2xb( jM− j )

−xR5x5−xb

−xbBxBxb

xb5x5xR

Ì
Â

Å
, (22)

c(x, zR, t)= (− jM+xb( jM− j )/xR)(x+xR). (23)

3. NUMERICAL METHOD

To determine the behaviour of the solutions of Equations (14)–(17), an extension of the
method developed by Christie et al. [6], for a related one-dimensional problem is considered.
To describe the numerical method, write the system (14)–(17) in the form

wt+ f(w)x+g(w)z=b, (24)

where

w= [a, m, n ]T,

f(w)= [m, mu+F(a), m6 ]T,

g(w)= [n, nu, n6+F(a)]T,

b=
�

0,
B(a)

(1−a)2

�(c
(z

−u
�

,
B(a)

(1−a)2

�
−
(c

(x
−6

�
−a

nT

,

and subscripts denote partial derivatives. The numerical method makes use of the non-conser-
vation form of Equation (24) which, from differentiation of f(w) and g(w), is given by

wt+J(w)wx+K(w)wz=b. (25)

The Jacobian matrices are

J=Ã
Á

Ä

0
−l+l−

−lm

1
l+ +l−

m

0
0
l

Ã
Â

Å
, (26)

and

K=Ã
Á

Ä

0
−lm

−m+m−

0
m

0

1
l

m+ +m−

Ã
Â

Å
, (27)
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where l=u, l9=u9
F % are the eigenvalues of J and m=6, m9=69
F % are the
eigenvalues of K.

To advance the solution of Equation (24) over one time step Dt, the splitting due to Strang
[7] produces the following sequence of problems to be solved at each time level:

wt=b, (28)

wt+J(w)wx=0, (29)

wt+K(w)wz=0, (30)

wt+J(w)wx=0, (31)

wt=b. (32)

The starting values for each equation (29)–(32) are provided by the solution of the preceding
equation. For Equation (28) the starting values are obtained from the solution of Equation
(32) computed at the previous time step (except at t=0 when the initial data are used).
Equation (30) is solved with a time step of Dt and the other four equations are each solved
with a time step of Dt/2. The scheme has second-order-accuracy in time.

The streamfunction c appears in terms of its first partial derivatives only in Equations (28)
and (32). Therefore, Equation (17) is solved initially and then immediately before and after
solving Equation (32) at each time step. Equation (17) is discretized using central differences
and the resulting system of algebraic equations is solved by Gauss–Seidel iteration. The
derivatives of c required in Equations (28) and (32) are then approximated using central
differences.

If it is assumed that the first partial derivatives of the streamfunction remain constant across
the fractional step then Equations (28) and (32) can be solved in closed form. Their solutions
are

a=a*, (33)

m=a*
(c

(z
(1−E)+m*E, (34)

n=a*(1−a*)N�1+ (1−a*)−N (c

(x
�

(E−1)+En*, (35)

where * signifies the starting value for the step and

E=exp(− (1−a*)−NDt/2). (36)

Equations (29)–(31) are solved using Roe’s method. Consider a Riemann problem in which
the initial data for each of Equations (29)–(31) are given by the left and right states
wL= [aL, mL, nL]T and wR= [aR, mR, nR]T, respectively. The left and right horizontal and
vertical velocities can be computed from the formulas u=m/a and 6=n/a respectively, if
a"0.

Roe’s method replaces Equations (29) and (31) by the linearized equation

wt+J( (wL, wR)wx=0, (37)

and Equation (30) by

wt+K( (wL, wR)wz=0, (38)

respectively. The approximate Jacobians J( and K( satisfy

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 381–394 (1998)



TWO-DIMENSIONAL FLUIDIZED BED MODEL 387

J( (wR−wL)= f(wR)− f(wL), (39)

K( (wR−wL)=g(wR)−g(wL), (40)

and are not uniquely determined. The following were chosen:

J( =Ã
Á

Ä

0
−l( +l( −

−l( m̄

1
l( + +l( −

m̄

0
0
l(
Ã
Â

Å
, (41)

and

K( =Ã
Á

Ä

0
−l( m̄

− m̄+m̄−

0
m̄

0

1
l(

m̄+ + m̄−

Ã
Â

Å
, (42)

where l( = ū, l( 9= ū9 c̄, m̄= 6̄, and m̄9= 6̄9 c̄. The averaged velocities are taken as in Roe [8]
and Glaister [19] to be

ū=

aRuR+
aLuL


aR+
aL

and 6̄=

aR6R+
aL6L


aR+
aL

. (43)

The averaged speed is given by

c̄2=
(F(aR)−F(aL))

(aR−aL)
, (44)

or, whenever aL and aR are close, by

c̄2=
dF
da

, at a=
1
2

(aR+aL). (45)

The matrices J( and K( can be diagonalized because

P−1J( P=diag(l( , l( −, l( +), (46)

and

Q−1K( Q=diag(m̄, m̄−, m̄+), (47)

where

P=Ã
Á

Ä

0
0
1

1
l( −
m̄

1
l( +
m̄

Ã
Â

Å
(48)

and

Q=Ã
Á

Ä

0
1
0

1
l(

m̄−

1
l(

m̄+

Ã
Â

Å
. (49)

Equations (37) and (38) then uncouple, giving
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P−1wt+P−1J( (wL, wR)PP−1wx=0, (50)

and

Q−1wt+Q−1K( (wL, wR)QQ−1wz=0. (51)

A discretization of Equations (50) and (51), which has first-order-accuracy in space is now
described, and another which has second-order-accuracy.

3.1. First-order method

The spatial domain is subdivided into rectangular cells [xi−1/2, xi+1/2]× [zj−1/2, zj+1/2], with
xi= −xR+ (i−1/2)Dx, zj= −zR+ ( j−1/2)Dz, i=1, . . . , Nx, j=1, . . . , Nz, whose sides
have the constant lengths Dx=2xR/Nx and Dz=2zR/Nz. The solution w is assumed to have the
constant value [aij, mij, nij ]T in the cell [xi−1/2, xi+1/2]× [zj−1/2, zj+1/2]. Additional, mirror-image
cells are included beyond the vertical walls and the bottom of the bed to incorporate the
reflecting boundary conditions in Equations (18) and (19).

There are six uncoupled equations in (50) and (51) which are all solved in a similar manner.
To illustrate the method, consider the first equation in (50) given by

Wt+l( Wx=0, (52)

where the scalar function W is the first component of the vector P−1w. First-order upwind
differencing produces

Wij
n+1=Wij

n −
1
2

n−dxWi+ (1/2)j
n −

1
2

n+dxWi− (1/2)j
n , (53)

i=1, . . . , Nx, j=1, . . . , Nz, n=0, . . . , Dt is the time step, Wij
n is the numerical approximation

to W in cell [xi−1/2, xi+1/2]× [zj−1/2, zj+1/2] at time t= tn, dx is the central difference operator
defined by dxWi+ (1/2)j

n =Wi+1j
n −Wij

n, and

n9= (l( 9 �l( �) Dt
Dx

. (54)

The other components of Equations (50) and (51) are discretized in a similar way.
A modification of the numerical procedure is required to handle the possibility of non-phys-

ical shocks which can occur in Roe’s method. These were encountered by Christie et al. [6] in
the one-dimensional problem and avoided by using the entropy fix described by Harten and
Hyman [9]. The same technique is used to generate the numerical results presented in this
paper.

The time step Dt is chosen to satisfy the CFL condition [20]. The maximum modulus
eigenvalue g of J( and K( is computed and the condition

DtBmin{Dx, Dz}C/g, (55)

where C is a constant between 0 and 1, is checked. The solution is rejected if the condition is
violated and the step is repeated, otherwise we proceed to the next time level. In either case,
the new time step is chosen as

DtB0.8 min{Dx, Dz}C/g. (56)

The factor 0.8 is included to reduce the number of rejected steps.
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3.2. Second-order method

Second-order-accuracy is obtained following the techniques of Roe [21] and Sweby [22]. The
first-order scheme (53) is modified by including an antidiffusive flux [22] on the right-hand-side
of Equation (53):

Wij
n+1=Wij

n −
1
2

n−dxWi+ (1/2)j
n −

1
2

n+dxWi− (1/2)j
n +sgn(l( )(hi+ (1/2)j−hi− (1/2)j), (57)

where

hi+ (1/2)j= −
1
2
�

1− �l( � Dt
Dx

�
l( Dt

Dx
B(dxWi+ (1/2)j

n , h), (58)

h=dxWi− (1/2)j
n if l( \0, (59)

and

h=dxWi+ (3/2)j
n if l( B0, (60)

i=1, . . . , Nx, j=1, . . . , Nz. The method requires mirror-image cells, in addition to those used
in the first-order method, to specify the boundary conditions.

The function B(j, h) is a flux limiter chosen to maintain monotonicity in the solution. Roe
[21] and Sweby [22] describe possible choices of B(j, h). As in Reference [6] the superbee flux
limiter is used here to compute the solution. Christie and Palencia [10] used an alternative flux
limiter known as minmod in their method. Defining

minmod(j, h)=
!j

h

if
if

�j �5 �h �
�j �\ �h �, (61)

and maxmod in a similar fashion, the superbee flux limiter is given by

B(j, h)=Í
Ã

Ã

Ã

Ã

Á

Ä

maxmod(j, h)

2 minmod(j, h)

0

if

if

if

1
2
5

h

j
52

h

j
B

1
2

or
h

j
\2

jhB0

. (62)

The second-order method also includes an entropy fix. The time step selection is identical to
that of the first-order method.

4. NUMERICAL RESULTS

A fluidized bed with a total height of 4 units (zR=2) and total width of 3 units (xR=1.5) is
now considered. Initially, the concentration of particles is a=a0u and the velocities are
u=6=0. Equation (17) is solved to find c. At time t\0, a jet of gas with a total width of
0.2 units (xb=0.1), enters from the bottom of the bed, centred at the point (0, −2) in the
x–z-plane. The flux of gas in the jet is j= (1−a0)3.5 with a0=0.2. Elsewhere at the bottom of
the bed the flux is jM= (1−aM)3.5 with aM=a0u=0.57.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 381–394 (1998)
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Figure 1. Contour plots of a at t=2, 4 and 6 obtained using the first-order method.

Results for the first-order method are shown in Figure 1. A 101×101 grid (Nx=Nz=101)
is used. Contour lines show the particle concentration in increments of 0.05 units with the
outermost contour representing a concentration of 0.55. The solution is given at times t=2,
4 and 6 units (Figure 1 (a), (b) and (c) respectively). A bubble develops near the jet and
gradually travels up the bed. By a time of t=2, there is an indication that two adjacent
bubbles are forming and are travelling up the bed together and by t=6 this is more
noticeable.

In Figure 2 the results obtained using the second-order method are shown. Again, a
101×101 grid is used and contour plots denote particle concentration increments of 0.05
units, with 0.55 as the outermost value. Figure 2(a), (b) and (c) show the concentrations at
times 2, 4 and 6 respectively. In this case, the more familiar kidney-shaped bubble is present.

Figure 2. Contour plots of a at t=2, 4 and 6 obtained using the second-order method.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 381–394 (1998)
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Figure 3. Centre line plots (x=0) of concentration against z at t=4. ( · · · ) 51×51 grid; (----) 101×101 grid; (—)
151×151 grid.

A much finer grid would be necessary in the first-order method to obtain an accuracy
comparable to that of the second-order method. Even on a 151×151 grid the behaviour of
the first-order method is similar to that shown in Figure 1. The computational cost of the
second-order is higher than for the first-order method on the same grid. However, to
achieve comparable accuracy, the first-order method would require such a fine grid that its
cost would be much higher than that for the second-order method.

The comparison between the first- and second-order methods given by Figures 1 and 2 is
interesting. The second-order method reproduces the kidney-shaped bubble and the first-or-
der method does not. The second-order results are obtained from a process which includes
the first-order method as a first-stage at each time step. The results in Figures 1 and 2 are
typical of those found with a large range of values of the parameters and they clearly
demonstrate the superiority of the second-order method. The remainder of the results
presented in the paper were found using the second-order method.

Figure 3 is a graph of the concentration along the centre line x=0 at a time of t=4
and refined mesh. The grid sizes used are 51×51 (small dashes), 101×101 (large dashes)
and 151×151 (continuous line). An odd number of points was selected in order to place a
node exactly at the middle of the jet. Each curve indicates the existence of a shock
immediately below the bubble. The results are reminiscent of the one-dimensional calcula-
tions given by Christie et al. [6]. For the two finer meshes in Figure 3 the curves are
similar, but on the coarse mesh there is a large difference, particularly with the apparent
shock not being resolved as sharply.

Figure 4 shows the particle velocities represented as a vector field. A contour line (a=
0.55, t=6) is superimposed to show the bubble location more clearly. It is shown in this
figure that, located behind the bubble, is a set of counter-rotating convective rolls and
these elongate with the passage of time. Figure 5 shows the same contour lines as in
Figure 2(c) but this time the streamlines corresponding to the total volumetric flux are
superimposed.
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5. CONCLUDING REMARKS

The numerical method proposed in this paper is second-order in space. It also has second-or-
der-accuracy in time and is explicit in time. The method captures sharp gradients without the
use of a numerical diffusion. The improved accuracy of the second-order method over the
first-order method, which is based on simple upwind differencing, is seen from a comparison
of the results. The second-order method produces the kidney-shaped bubbles in accordance
with physical observations whereas, on the same grid, the first-order method does not. It
would require a finer mesh and a much more expensive calculation than that of the
second-order method to achieve comparable accuracy when using the first-order method.

A centrally-located jet of a specific width and fluidizing particles of a specific size and
density was used to test the numerical method, but it would be worthwhile to adjust the
parameters and compare with the wide variety of observed behaviour of jets. Another problem
worth considering is a number of much smaller jets dispersed along the length of the
distributor to model pores in the material from which the distributor is made. Such studies
would allow the consideration of how bubbles are formed as well as how they interact in the
bed. In addition, the new information about the dynamics of the bed received from these

Figure 4. Particle velocity vectors at t=6 with a contour outline of the bubble.
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Figure 5. Figure 2(c) with streamlines superimposed.

calculations (namely the existence of a set of convective rolls behind the bubble) may allow
new advances in more analytic calculations concerning bubble dynamics.
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